Soil Moisture Fluctuations and Differential Settlement

Soil Moisture Fluctuations and Differential Settlement

Identifying Expansive Clay in Foundation Damage

Okay, lets talk about how changes in soil moisture can mess with your houses foundation. Its a bigger deal than you might think! Those windows that suddenly won't close properly aren't rebelling against you but rather responding to the foundation shift tango foundation repair financing Cook County France. We're diving into the connection between soil moisture fluctuations and differential settlement, and how they impact the stability of your foundation.


Think of your foundation as resting on a sponge. When the sponge is evenly damp, everything is stable. But what happens when one side of the sponge dries out while the other stays wet? It warps, right? Thats essentially what happens with soil moisture and your foundation.


Soil, especially clay-rich soil, is really sensitive to moisture content. When its dry, it shrinks. When its wet, it expands. Now, imagine that this expansion and contraction isnt happening evenly around your foundation. Maybe one side is shaded and stays wetter, while the other side is exposed to the sun and dries out faster. This uneven shrinking and swelling is what we call differential settlement – one part of your foundation settles more than another.


This differential settlement is where the problems start. It can cause cracks in your walls, sticking doors and windows, and even structural damage in severe cases. These cracks arent just cosmetic; theyre a sign that your foundation is under stress. The bigger the difference in moisture content and the more dramatic the shrink-swell cycle, the worse the damage can be.


So, what causes these uneven moisture levels? Poor drainage is a big culprit. If rainwater isnt properly diverted away from your foundation, it can saturate the soil on one side. Leaky pipes, both underground and above ground, can also contribute to localized saturation. On the other hand, large trees near your foundation can suck up moisture from the soil, causing it to dry out and shrink. Even seasonal changes, like prolonged droughts or heavy rains, can play a significant role.


The impact of these soil moisture changes on foundation stability is a slow, insidious process. It might not be immediately noticeable, but over time, the cumulative effect of repeated shrink-swell cycles can weaken the foundation and lead to significant problems.


Ultimately, understanding the relationship between soil moisture and foundation stability is key to preventing costly repairs. Proper drainage, careful landscaping, and regular inspections can help you maintain a consistent soil moisture level around your foundation and keep your house on solid ground.

Okay, so were talking about soil moisture, how it changes, and how that can mess with buildings through something called differential settlement. Basically, if the ground under your house swells and shrinks unevenly because of moisture changes, parts of your foundation can sink or rise more than others, leading to cracks and other nasty problems. So, how do we even know whats going on with the water down there? Thats where monitoring comes in.


There are a bunch of techniques, ranging from the surprisingly simple to the seriously high-tech. One of the oldest and still very useful methods is good old-fashioned visual inspection and manual sampling. You dig a hole, look at the soil, feel it, maybe even try to roll it into a ball to see how well it holds together. This gives you a rough idea of the moisture content, but its subjective and only tells you about one specific spot at one specific time.


Then youve got things like tensiometers. These devices measure the "soil water tension" – how tightly the water is held by the soil. Think of it like how hard a plant has to work to suck up water. Higher tension means drier soil. Theyre relatively inexpensive and fairly reliable for certain soil types, but they need regular maintenance and arent great in really dry conditions.


For more continuous and automated monitoring, we turn to things like soil moisture sensors. These come in different flavors, like capacitance sensors that measure the soils ability to store an electrical charge (which changes with moisture content), or time-domain reflectometry (TDR) sensors that send an electrical pulse down cables in the soil and measure how long it takes to bounce back, again revealing moisture levels. These sensors can be hooked up to data loggers that record readings over time, giving you a much more detailed picture of moisture fluctuations.


And lets not forget remote sensing techniques. Satellites and airplanes can use radar and other sensors to estimate soil moisture over large areas. While not as precise as in-situ measurements, they can be really helpful for identifying areas that might be at higher risk of differential settlement.


The best approach usually involves a combination of these techniques, depending on the specific site conditions, the type of soil, and the level of accuracy needed. Understanding the nuances of each method is key to effectively managing soil moisture and preventing costly foundation problems. Its all about knowing whats happening beneath our feet.

Preventive Measures for Foundations on Expansive Soil

Okay, lets talk about how to keep our buildings from cracking up because of soil moisture changes. Were talking about differential settlement – basically, when one part of a buildings foundation sinks more than another. Soil moisture fluctuations are huge culprits here. Think of it like this: dry soil shrinks, wet soil expands. If the soil under your house does this unevenly, your house is going to feel the strain.


So, what can we do to prevent this headache? The key is to manage that soil moisture. First up, good drainage is absolutely critical. We need to get rainwater away from the foundation. That means properly graded landscaping, functional gutters and downspouts that direct water away, and maybe even subsurface drains if the site is naturally prone to waterlogging. Think of it as giving the water a clear path to escape instead of letting it pool around the foundation.


Next, consider vegetation. Trees are beautiful, but their roots can suck up a lot of moisture. Planting thirsty trees too close to a building is a recipe for uneven drying and, you guessed it, differential settlement. Ideally, keep large trees at a distance, and be mindful of the type of vegetation you plant near the foundation.


Another important measure is maintaining consistent soil moisture levels. This might seem counterintuitive, but sometimes consistent watering, especially during prolonged dry spells, can help prevent drastic shrinkage. Of course, you dont want to overdo it and create a swamp, but a little supplemental watering can keep things relatively stable.


Finally, for new construction, soil improvement techniques are vital. This might involve compacting the soil properly before building, or even using soil stabilization methods like adding lime or cement to make the soil less susceptible to volume changes. Ground improvement techniques like deep dynamic compaction can also improve the overall soil characteristics.


Ultimately, preventing differential settlement due to soil moisture fluctuations is a multi-pronged approach. Its about understanding the soil conditions, managing water effectively, and making smart choices about landscaping and construction techniques. Its an investment in the long-term health and stability of the building, and its well worth the effort to avoid those costly and unsightly cracks down the road.

Preventive Measures for Foundations on Expansive Soil

Repair Techniques for Foundations Affected by Clay Swelling

Case studies on foundation repair due to soil moisture fluctuations provide invaluable insights into the practical challenges and solutions associated with differential settlement in construction. Soil moisture fluctuations can significantly alter the bearing capacity of soil, leading to uneven settling of structures, which is particularly problematic in regions prone to droughts or heavy rainfall. These fluctuations cause the soil to expand when wet and contract when dry, creating a dynamic environment that foundations must withstand.


One notable case involved a residential home in Texas, where prolonged drought conditions led to significant soil shrinkage. The clay-rich soil beneath the house contracted, causing parts of the foundation to settle more than others. This resulted in visible cracks in walls and misaligned doors and windows. Engineers addressed this by installing piers that reached deeper, stable layers of soil or bedrock, effectively lifting and stabilizing the foundation. This intervention not only corrected the immediate issue but also provided a long-term solution against future moisture-related movements.


Another example comes from a commercial building in California during an unusually wet season. Here, excessive moisture caused expansive soils to swell, pushing up certain sections of the foundation while others remained unchanged. This led to structural distortions noticeable through tilted columns and uneven flooring. The solution here involved removing excess moisture through improved drainage solutions around the buildings perimeter and reinforcing the foundation with additional supports where uplift was most severe.


These case studies highlight several key takeaways: first, understanding local soil types and their behavior under varying moisture conditions is crucial for both pre-construction planning and post-construction maintenance. Second, proactive measures like proper landscaping for drainage control can mitigate risks before they become costly repairs. Lastly, when issues arise, tailored engineering solutions based on thorough site assessment are essential for effective remediation.


In conclusion, addressing foundation problems due to soil moisture fluctuations requires a blend of foresight in design, responsive maintenance practices, and innovative repair strategies when differential settlement occurs. Each case study not only solves immediate structural concerns but also enriches our collective knowledge on managing such environmental challenges in construction engineering.

In design, a foundation is the aspect of a framework which links it to the ground or more seldom, water (just like drifting structures), moving tons from the framework to the ground. Structures are usually considered either shallow or deep. Structure engineering is the application of soil auto mechanics and rock auto mechanics (geotechnical engineering) in the layout of foundation aspects of structures.

.
Drilling of deep piles of diameter 150 cm in bridge 423 near Ness Ziona, Israel

 

A deep foundation installation for a bridge in Napa, California, United States.
Pile driving operations in the Port of Tampa, Florida.

A pile or piling is a vertical structural element of a deep foundation, driven or drilled deep into the ground at the building site. A deep foundation is a type of foundation that transfers building loads to the earth farther down from the surface than a shallow foundation does to a subsurface layer or a range of depths.

Deep foundations of The Marina Torch, a skyscraper in Dubai

There are many reasons that a geotechnical engineer would recommend a deep foundation over a shallow foundation, such as for a skyscraper. Some of the common reasons are very large design loads, a poor soil at shallow depth, or site constraints like property lines. There are different terms used to describe different types of deep foundations including the pile (which is analogous to a pole), the pier (which is analogous to a column), drilled shafts, and caissons. Piles are generally driven into the ground in situ; other deep foundations are typically put in place using excavation and drilling. The naming conventions may vary between engineering disciplines and firms. Deep foundations can be made out of timber, steel, reinforced concrete or prestressed concrete.

Driven foundations

[edit]
Pipe piles being driven into the ground
Illustration of a hand-operated pile driver in Germany after 1480

Prefabricated piles are driven into the ground using a pile driver. Driven piles are constructed of wood, reinforced concrete, or steel. Wooden piles are made from the trunks of tall trees. Concrete piles are available in square, octagonal, and round cross-sections (like Franki piles). They are reinforced with rebar and are often prestressed. Steel piles are either pipe piles or some sort of beam section (like an H-pile). Historically, wood piles used splices to join multiple segments end-to-end when the driven depth required was too long for a single pile; today, splicing is common with steel piles, though concrete piles can be spliced with mechanical and other means. Driving piles, as opposed to drilling shafts, is advantageous because the soil displaced by driving the piles compresses the surrounding soil, causing greater friction against the sides of the piles, thus increasing their load-bearing capacity. Driven piles are also considered to be "tested" for weight-bearing ability because of their method of installation.[citation needed]

Pile foundation systems

[edit]

Foundations relying on driven piles often have groups of piles connected by a pile cap (a large concrete block into which the heads of the piles are embedded) to distribute loads that are greater than one pile can bear. Pile caps and isolated piles are typically connected with grade beams to tie the foundation elements together; lighter structural elements bear on the grade beams, while heavier elements bear directly on the pile cap.[citation needed]

Monopile foundation

[edit]

A monopile foundation utilizes a single, generally large-diameter, foundation structural element to support all the loads (weight, wind, etc.) of a large above-surface structure.

A large number of monopile foundations[1] have been utilized in recent years for economically constructing fixed-bottom offshore wind farms in shallow-water subsea locations.[2] For example, the Horns Rev wind farm in the North Sea west of Denmark utilizes 80 large monopiles of 4 metres diameter sunk 25 meters deep into the seabed,[3] while the Lynn and Inner Dowsing Wind Farm off the coast of England went online in 2008 with over 100 turbines, each mounted on a 4.7-metre-diameter monopile foundation in ocean depths up to 18 metres.[4]

The typical construction process for a wind turbine subsea monopile foundation in sand includes driving a large hollow steel pile, of some 4 m in diameter with approximately 50mm thick walls, some 25 m deep into the seabed, through a 0.5 m layer of larger stone and gravel to minimize erosion around the pile. A transition piece (complete with pre-installed features such as boat-landing arrangement, cathodic protection, cable ducts for sub-marine cables, turbine tower flange, etc.) is attached to the driven pile, and the sand and water are removed from the centre of the pile and replaced with concrete. An additional layer of even larger stone, up to 0.5 m diameter, is applied to the surface of the seabed for longer-term erosion protection.[2]

Drilled piles

[edit]
A pile machine in Amsterdam.

Also called caissons, drilled shafts, drilled piers, cast-in-drilled-hole piles (CIDH piles) or cast-in-situ piles, a borehole is drilled into the ground, then concrete (and often some sort of reinforcing) is placed into the borehole to form the pile. Rotary boring techniques allow larger diameter piles than any other piling method and permit pile construction through particularly dense or hard strata. Construction methods depend on the geology of the site; in particular, whether boring is to be undertaken in 'dry' ground conditions or through water-saturated strata. Casing is often used when the sides of the borehole are likely to slough off before concrete is poured.

For end-bearing piles, drilling continues until the borehole has extended a sufficient depth (socketing) into a sufficiently strong layer. Depending on site geology, this can be a rock layer, or hardpan, or other dense, strong layers. Both the diameter of the pile and the depth of the pile are highly specific to the ground conditions, loading conditions, and nature of the project. Pile depths may vary substantially across a project if the bearing layer is not level. Drilled piles can be tested using a variety of methods to verify the pile integrity during installation.

Under-reamed piles

[edit]

Under-reamed piles have mechanically formed enlarged bases that are as much as 6 m in diameter.[citation needed] The form is that of an inverted cone and can only be formed in stable soils or rocks. The larger base diameter allows greater bearing capacity than a straight-shaft pile.

These piles are suited for expansive soils which are often subjected to seasonal moisture variations, or for loose or soft strata. They are used in normal ground condition also where economics are favorable. [5][full citation needed]

Under reamed piles foundation is used for the following soils:-

1. Under reamed piles are used in black cotton soil: This type of soil expands when it comes in contact with water and contraction occurs when water is removed. So that cracks appear in the construction done on such clay. An under reamed pile is used in the base to remove this defect.

2. Under reamed piles are used in low bearing capacity Outdated soil (filled soil)

3.Under reamed piles are used in sandy soil when water table is high.

4. Under reamed piles are used, Where lifting forces appear at the base of foundation.

Augercast pile

[edit]

An augercast pile, often known as a continuous flight augering (CFA) pile, is formed by drilling into the ground with a hollow stemmed continuous flight auger to the required depth or degree of resistance. No casing is required. A cement grout mix is then pumped down the stem of the auger. While the cement grout is pumped, the auger is slowly withdrawn, conveying the soil upward along the flights. A shaft of fluid cement grout is formed to ground level. Reinforcement can be installed. Recent innovations in addition to stringent quality control allows reinforcing cages to be placed up to the full length of a pile when required.[citation needed]

Augercast piles cause minimal disturbance and are often used for noise-sensitive and environmentally-sensitive sites. Augercast piles are not generally suited for use in contaminated soils, because of expensive waste disposal costs. In cases such as these, a displacement pile (like Olivier piles) may provide the cost efficiency of an augercast pile and minimal environmental impact. In ground containing obstructions or cobbles and boulders, augercast piles are less suitable as refusal above the design pile tip elevation may be encountered.[citation needed]

Small Sectional Flight Auger piling rigs can also be used for piled raft foundations. These produce the same type of pile as a Continuous Flight Auger rig but using smaller, more lightweight equipment. This piling method is fast, cost-effective and suitable for the majority of ground types.[5][6]

Pier and grade beam foundation

[edit]

In drilled pier foundations, the piers can be connected with grade beams on which the structure sits, sometimes with heavy column loads bearing directly on the piers. In some residential construction, the piers are extended above the ground level, and wood beams bearing on the piers are used to support the structure. This type of foundation results in a crawl space underneath the building in which wiring and duct work can be laid during construction or re-modelling.[7]

Speciality piles

[edit]

Jet-piles

[edit]

In jet piling high pressure water is used to set piles.[8] High pressure water cuts through soil with a high-pressure jet flow and allows the pile to be fitted.[9] One advantage of Jet Piling: the water jet lubricates the pile and softens the ground.[10] The method is in use in Norway.[11]

Micropiles

[edit]

Micropiles are small diameter, generally less than 300mm diameter, elements that are drilled and grouted in place.  They typically get their capacity from skin friction along the sides of the element, but can be end bearing in hard rock as well. Micropiles are usually heavily reinforced with steel comprising more than 40% of their cross section. They can be used as direct structural support or as ground reinforcement elements.  Due to their relatively high cost and the type of equipment used to install these elements, they are often used where access restrictions and or very difficult ground conditions (cobbles and boulders, construction debris, karst, environmental sensitivity) exists or to retrofit existing structures.  Occasionally, in difficult ground, they are used for new construction foundation elements. Typical applications include underpinning, bridge, transmission tower and slope stabilization projects.[6][12][13][14]

Tripod piles

[edit]

The use of a tripod rig to install piles is one of the more traditional ways of forming piles. Although unit costs are generally higher than with most other forms of piling,[citation needed] it has several advantages which have ensured its continued use through to the present day. The tripod system is easy and inexpensive to bring to site, making it ideal for jobs with a small number of piles.[clarification needed]

Sheet piles

[edit]
Sheet piles are used to restrain soft soil above the bedrock in this excavation

Sheet piling is a form of driven piling using thin interlocking sheets of steel to obtain a continuous barrier in the ground. The main application of sheet piles is in retaining walls and cofferdams erected to enable permanent works to proceed. Normally, vibrating hammer, t-crane and crawle drilling are used to establish sheet piles.[citation needed]

Soldier piles

[edit]
A soldier pile wall using reclaimed railway sleepers as lagging.

Soldier piles, also known as king piles or Berlin walls, are constructed of steel H sections spaced about 2 to 3 m apart and are driven or drilled prior to excavation. As the excavation proceeds, horizontal timber sheeting (lagging) is inserted behind the H pile flanges.

The horizontal earth pressures are concentrated on the soldier piles because of their relative rigidity compared to the lagging. Soil movement and subsidence is minimized by installing the lagging immediately after excavation to avoid soil loss.[citation needed] Lagging can be constructed by timber, precast concrete, shotcrete and steel plates depending on spacing of the soldier piles and the type of soils.

Soldier piles are most suitable in conditions where well constructed walls will not result in subsidence such as over-consolidated clays, soils above the water table if they have some cohesion, and free draining soils which can be effectively dewatered, like sands.[citation needed]

Unsuitable soils include soft clays and weak running soils that allow large movements such as loose sands. It is also not possible to extend the wall beyond the bottom of the excavation, and dewatering is often required.[citation needed]

Screw piles

[edit]

Screw piles, also called helical piers and screw foundations, have been used as foundations since the mid 19th century in screw-pile lighthouses.[citation needed] Screw piles are galvanized iron pipe with helical fins that are turned into the ground by machines to the required depth. The screw distributes the load to the soil and is sized accordingly.

Suction piles

[edit]

Suction piles are used underwater to secure floating platforms. Tubular piles are driven into the seabed (or more commonly dropped a few metres into a soft seabed) and then a pump sucks water out at the top of the tubular, pulling the pile further down.

The proportions of the pile (diameter to height) are dependent upon the soil type. Sand is difficult to penetrate but provides good holding capacity, so the height may be as short as half the diameter. Clays and muds are easy to penetrate but provide poor holding capacity, so the height may be as much as eight times the diameter. The open nature of gravel means that water would flow through the ground during installation, causing 'piping' flow (where water boils up through weaker paths through the soil). Therefore, suction piles cannot be used in gravel seabeds.[citation needed]

Adfreeze piles

[edit]
Adfreeze piles supporting a building in Utqiaġvik, Alaska

In high latitudes where the ground is continuously frozen, adfreeze piles are used as the primary structural foundation method.

Adfreeze piles derive their strength from the bond of the frozen ground around them to the surface of the pile.[citation needed]

Adfreeze pile foundations are particularly sensitive in conditions which cause the permafrost to melt. If a building is constructed improperly then it can melt the ground below, resulting in a failure of the foundation system.[citation needed]

Vibrated stone columns

[edit]

Vibrated stone columns are a ground improvement technique where columns of coarse aggregate are placed in soils with poor drainage or bearing capacity to improve the soils.[citation needed]

Hospital piles

[edit]

Specific to marine structures, hospital piles (also known as gallow piles) are built to provide temporary support to marine structure components during refurbishment works. For example, when removing a river pontoon, the brow will be attached to hospital pile to support it. They are normal piles, usually with a chain or hook attachment.[citation needed]

Piled walls

[edit]
Sheet piling, by a bridge, was used to block a canal in New Orleans after Hurricane Katrina damaged it.

Piled walls can be drivene or bored. They provide special advantages where available working space dictates and open cut excavation not feasible. Both methods offer technically effective and offer a cost efficient temporary or permanent means of retaining the sides of bulk excavations even in water bearing strata. When used in permanent works, these walls can be designed to resist vertical loads in addition lateral load from retaining soil. Construction of both methods is the same as for foundation bearing piles. Contiguous walls are constructed with small gaps between adjacent piles. The spacing of the piles can be varied to provide suitable bending stiffness.

Secant piled walls

[edit]

Secant pile walls are constructed such that space is left between alternate 'female' piles for the subsequent construction of 'male' piles.[clarification needed] Construction of 'male' piles involves boring through the concrete in the 'female' piles hole in order to key 'male' piles between. The male pile is the one where steel reinforcement cages are installed, though in some cases the female piles are also reinforced.[citation needed]

Secant piled walls can either be true hard/hard, hard/intermediate (firm), or hard/soft, depending on design requirements. Hard refers to structural concrete and firm or soft is usually a weaker grout mix containing bentonite.[citation needed] All types of wall can be constructed as free standing cantilevers, or may be propped if space and sub-structure design permit. Where party wall agreements allow, ground anchors can be used as tie backs.

Slurry walls

[edit]

A slurry wall is a barrier built under ground using a mix of bentonite and water to prevent the flow of groundwater. A trench that would collapse due to the hydraulic pressure in the surrounding soil does not collapse as the slurry balances the hydraulic pressure.

Deep mixing/mass stabilization techniques

[edit]

These are essentially variations of in situ reinforcements in the form of piles (as mentioned above), blocks or larger volumes.

Cement, lime/quick lime, flyash, sludge and/or other binders (sometimes called stabilizer) are mixed into the soil to increase bearing capacity. The result is not as solid as concrete, but should be seen as an improvement of the bearing capacity of the original soil.

The technique is most often applied on clays or organic soils like peat. The mixing can be carried out by pumping the binder into the soil whilst mixing it with a device normally mounted on an excavator or by excavating the masses, mixing them separately with the binders and refilling them in the desired area. The technique can also be used on lightly contaminated masses as a means of binding contaminants, as opposed to excavating them and transporting to landfill or processing.

Materials

[edit]

Timber

[edit]

As the name implies, timber piles are made of wood.

Historically, timber has been a plentiful, locally available resource in many areas. Today, timber piles are still more affordable than concrete or steel. Compared to other types of piles (steel or concrete), and depending on the source/type of timber, timber piles may not be suitable for heavier loads.

A main consideration regarding timber piles is that they should be protected from rotting above groundwater level. Timber will last for a long time below the groundwater level. For timber to rot, two elements are needed: water and oxygen. Below the groundwater level, dissolved oxygen is lacking even though there is ample water. Hence, timber tends to last for a long time below the groundwater level. An example is Venice, which has had timber pilings since its beginning; even most of the oldest piles are still in use. In 1648, the Royal Palace of Amsterdam was constructed on 13,659 timber piles that still survive today since they were below groundwater level. Timber that is to be used above the water table can be protected from decay and insects by numerous forms of wood preservation using pressure treatment (alkaline copper quaternary (ACQ), chromated copper arsenate (CCA), creosote, etc.).

Splicing timber piles is still quite common and is the easiest of all the piling materials to splice. The normal method for splicing is by driving the leader pile first, driving a steel tube (normally 60–100 cm long, with an internal diameter no smaller than the minimum toe diameter) half its length onto the end of the leader pile. The follower pile is then simply slotted into the other end of the tube and driving continues. The steel tube is simply there to ensure that the two pieces follow each other during driving. If uplift capacity is required, the splice can incorporate bolts, coach screws, spikes or the like to give it the necessary capacity.

Iron

[edit]

Cast iron may be used for piling. These may be ductile.[citation needed]

Steel

[edit]
Cutaway illustration. Deep inclined (battered) pipe piles support a precast segmented skyway where upper soil layers are weak muds.

Pipe piles are a type of steel driven pile foundation and are a good candidate for inclined (battered) piles.

Pipe piles can be driven either open end or closed end. When driven open end, soil is allowed to enter the bottom of the pipe or tube. If an empty pipe is required, a jet of water or an auger can be used to remove the soil inside following driving. Closed end pipe piles are constructed by covering the bottom of the pile with a steel plate or cast steel shoe.

In some cases, pipe piles are filled with concrete to provide additional moment capacity or corrosion resistance. In the United Kingdom, this is generally not done in order to reduce the cost.[citation needed] In these cases corrosion protection is provided by allowing for a sacrificial thickness of steel or by adopting a higher grade of steel. If a concrete filled pipe pile is corroded, most of the load carrying capacity of the pile will remain intact due to the concrete, while it will be lost in an empty pipe pile. The structural capacity of pipe piles is primarily calculated based on steel strength and concrete strength (if filled). An allowance is made for corrosion depending on the site conditions and local building codes. Steel pipe piles can either be new steel manufactured specifically for the piling industry or reclaimed steel tubular casing previously used for other purposes such as oil and gas exploration.

H-Piles are structural beams that are driven in the ground for deep foundation application. They can be easily cut off or joined by welding or mechanical drive-fit splicers. If the pile is driven into a soil with low pH value, then there is a risk of corrosion, coal-tar epoxy or cathodic protection can be applied to slow or eliminate the corrosion process. It is common to allow for an amount of corrosion in design by simply over dimensioning the cross-sectional area of the steel pile. In this way, the corrosion process can be prolonged up to 50 years.[citation needed]

Prestressed concrete piles

[edit]

Concrete piles are typically made with steel reinforcing and prestressing tendons to obtain the tensile strength required, to survive handling and driving, and to provide sufficient bending resistance.

Long piles can be difficult to handle and transport. Pile joints can be used to join two or more short piles to form one long pile. Pile joints can be used with both precast and prestressed concrete piles.

Composite piles

[edit]

A "composite pile" is a pile made of steel and concrete members that are fastened together, end to end, to form a single pile. It is a combination of different materials or different shaped materials such as pipe and H-beams or steel and concrete.

'Pile jackets' encasing old concrete piles in a saltwater environment to prevent corrosion and consequential weakening of the piles when cracks allow saltwater to contact the internal steel reinforcement rods

Construction machinery for driving piles into the ground

[edit]

Construction machinery used to drive piles into the ground:[15]

  • Pile driver is a device for placing piles in their designed position.
  • Diesel pile hammer is a device for hammering piles into the ground.
  • Hydraulic hammer is removable working equipment of hydraulic excavators, hydroficated machines (stationary rock breakers, loaders, manipulators, pile driving hammers) used for processing strong materials (rock, soil, metal) or pile driving elements by impact of falling parts dispersed by high-pressure fluid.
  • Vibratory pile driver is a machine for driving piles into sandy and clay soils.
  • Press-in pile driver is a machine for sinking piles into the ground by means of static force transmission.[16]
  • Universal drilling machine.

Construction machinery for replacement piles

[edit]

Construction machinery used to construct replacement piles:[15]

  • Sectional Flight Auger or Continuous Flight Auger
  • Reverse circulation drilling
  • Ring bit concentric drilling

See also

[edit]
  • Eurocode EN 1997
  • International Society for Micropiles
  • Post in ground construction also called earthfast or posthole construction; a historic method of building wooden structures.
  • Stilt house, also known as a lake house; an ancient, historic house type built on pilings.
  • Shallow foundations
  • Pile bridge
  • Larssen sheet piling

Notes

[edit]
  1. ^ Offshore Wind Turbine Foundations, 2009-09-09, accessed 2010-04-12.
  2. ^ a b Constructing a turbine foundation Archived 21 May 2011 at the Wayback Machine Horns Rev project, Elsam monopile foundation construction process, accessed 2010-04-12]
  3. ^ Horns Revolution Archived 14 July 2011 at the Wayback Machine, Modern Power Systems, 2002-10-05, accessed 2010-04-14.
  4. ^ "Lynn and Inner Dowsing description". Archived from the original on 26 July 2011. Retrieved 23 July 2010.
  5. ^ a b Handbook on Under-reamed and bored compaction pile foundation, Central building research institute Roorkee, Prepared by Devendra Sharma, M. P. Jain, Chandra Prakash
  6. ^ a b Siel, Barry D.; Anderson, Scott A. "Implementation of Micropiles by the Federal Highway Administration" (PDF). Federal Highway Administration (US). cite journal: Cite journal requires |journal= (help)
  7. ^ Marshall, Brain (April 2000). "How House Construction Works". How Stuff Works. HowStuffWorks, Inc. Retrieved 4 April 2013.
  8. ^ "jet-pile". Merriam-Webster. Retrieved 2 August 2020.
  9. ^ Guan, Chengli; Yang, Yuyou (21 February 2019). "Field Study on the Waterstop of the Rodin Jet Pile". Applied Sciences. doi:10.3390/app9081709. Retrieved 2 August 2020.
  10. ^ "Press-in with Water Jetting". Giken.com. Giken Ltd. Retrieved 2 August 2020.
  11. ^ "City Lade, Trondheim". Jetgrunn.no. Jetgrunn AS. Retrieved 2 August 2020.
  12. ^ Omer, Joshua R. (2010). "A Numerical Model for Load Transfer and Settlement of Bored Cast In-Situ Piles". Proceedings of the 35th Annual Conference on Deep Foundations. Archived from the original on 14 April 2021. Retrieved 20 July 2011.
  13. ^ "International Society for Micropiles". Retrieved 2 February 2007.
  14. ^ "GeoTechTools". Geo-Institute. Retrieved 15 April 2022.
  15. ^ a b McNeil, Ian (1990). An Encyclopaedia of the history of technolology. Routledge. ISBN 9780415147927. Retrieved 20 July 2022 – via Internet Archive.
  16. ^ "General description of the press-in pile driving unit". Concrete Pumping Melbourne. 13 October 2021. Archived from the original on 25 December 2022. Retrieved 20 July 2022.

References

[edit]
  • Italiantrivelle Foundation Industry Archived 25 June 2014 at the Wayback Machine The Deep Foundation web portal Italiantrivelle is the number one source of information regarding the Foundation Industry. (Link needs to be removed or updated, links to inappropriate content)
  • Fleming, W. G. K. et al., 1985, Piling Engineering, Surrey University Press; Hunt, R. E., Geotechnical Engineering Analysis and Evaluation, 1986, McGraw-Hill.
  • Coduto, Donald P. Foundation Design: Principles and Practices 2nd ed., Prentice-Hall Inc., 2001.
  • NAVFAC DM 7.02 Foundations and Earth Structures U.S. Naval Facilities Engineering Command, 1986.
  • Rajapakse, Ruwan., Pile Design and Construction Guide, 2003
  • Tomlinson, P.J., Pile Design and Construction Practice, 1984
  • Stabilization of Organic Soils Archived 22 February 2012 at the Wayback Machine
  • Sheet piling handbook, 2010
[edit]
  • Deep Foundations Institute

 

About Cook County

Driving Directions in Cook County


Driving Directions From 42.051159627372, -88.202951526236 to
Driving Directions From 42.092671011935, -88.097873714537 to
Driving Directions From 42.027864686476, -88.178784129852 to
Driving Directions From 42.080861469688, -88.119629346452 to
Driving Directions From 42.092626312283, -88.191267040052 to
Driving Directions From 42.102378896248, -88.203932774646 to
Driving Directions From 42.101413863629, -88.180736768318 to
Driving Directions From 42.098479365503, -88.089470502033 to
Driving Directions From 42.111332166598, -88.176665125485 to
Driving Directions From 42.124515141614, -88.154087492577 to